A Method To Accomplish a 1,4-Addition Reaction of Bulky Nucleophiles to Enones and Subsequent Formation of Reactive Enolates

Anthony D. William and Yuichi Kobayashi*

Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan

ykobayas@bio.titech.ac.jp

Received April 16, 2001

ABSTRACT

(1) $\begin{bmatrix} X = H \\ X = I \end{bmatrix}$ Ar: bulky aryl groups reactive enolate

BF₃-promoted 1,4-addition of bulky aryl groups to α -iodo enones, prepared from the parent enones, afforded β -aryl- α -iodo ketones. Subsequent reaction with EtMgBr furnished the magnesium enolates, which upon reactions with CIP(O)(OEt)₂ and aldehydes gave enol phosphates and aldols, respectively. This method was applied successfully to a synthesis of Δ^1 -trans-tetrahydrocannabinol.

1,4-Addition of organocopper reagents to α,β -unsaturated carbonyl compounds assisted by BF₃·OEt₂ is a standard method to introduce a *bulky* group at the β -position of the carbonyl compounds (for example, $1 + 2 \rightarrow 3$ in Scheme 1).¹ Unfortunately, the unreactive nature of the resulting boron enolates is described by Lipshutz,^{1c} and hence it seems impossible to enjoy the benefit of the enolate chemistry. To the best of our knowledge, neither reaction at the α position nor formation of enol esters (or ethers) for further reactions has been reported.

In our investigation of the synthesis of tetrahydrocannabinol (THC), use of BF₃·OEt₂ was indeed *indispensable* for the 1,4-addition reaction of the bulky cuprate **2a** to enone **1a** (R¹ = CMe₂(OTES)) (Et₂O, -78 °C, 1.5 h), and the addition product (structure not shown) was isolated in 90% yield after aqueous workup (Scheme 1). However, the enolate generated in situ by the above BF₃·OEt₂-assisted 1,4-addition showed no reactivity, as suggested by Lipshutz,^{1c} toward $PhN(Tf)_2$, Tf_2O , or $ClP(=O)(OEt)_2$.² Since a silvl enol ether could be metalated to a reactive enolate, we also attempted reaction of 1a and 2a with TMSCl and HMPA in THF according to Nakamura.³ However, the reaction did not furnish the corresponding TMS ether. Addition of n-BuLi to the boron enolate did not increase the reactivity toward $ClP(=O)(OEt)_2$ ⁴ In contrast to the bulky cuprate 2a, the phenyl cuprate 2e, in a control experiment, underwent reaction with enone 1a smoothly without the assistance of BF₃·OEt₂ (Et₂O, -78 °C, 2 h), and the resulting enolate, upon reaction with ClP(O)(OEt)₂ (-78 °C to rt, 1 h), afforded enol phosphate **4h** ($R^1 = CMe_2(OTES)$, Ar = Ph, E = P(O)-(OEt)₂) in 63% yield. On the other hand, the enolate produced in situ from 1a and 2e in the presence of BF₃·OEt₂ did not react and therefore did not furnish the phosphate. These

ORGANIC

^{(1) (}a) Tius, M. A.; Kannaangara, G. S. K. *J. Org. Chem.* **1990**, *55*, 5711–5714. (b) Rickards, R. W.; Rönneberg, H. *J. Org. Chem.* **1984**, *49*, 572–573. (c) Lipshutz, B. H.; Parker, D. A.; Kozlowski, J. A.; Nguyen, S. L. Tetrahedron Lett. **1984**, *25*, 5959–5962.

⁽²⁾ McMurry, J. E.; Scott, W. J. *Tetrahedron Lett.* 1983, 24, 979–982.
(3) Nakamura, E.; Matsuzawa, S.; Horiguchi, Y.; Kuwajima, I. *Tetrahedron Lett.* 1986, 27, 4029–4032.

⁽⁴⁾ Addition of *n*-BuLi to the (presumed) copper enolate is reported to increase the reactivity of the given enolate: Batt, D. G.; Takamura, N.; Ganem, B. J. Am. Chem. Soc. **1984**, 106, 3353–3354.

preliminary results prompted us to devise an indirect method. Shown in Scheme 1 is one such method which consists of 1,4-addition of the cuprate 2 to α -iodocycloalkenones 6 and subsequent transformation of the resulting α -iodo ketones 7 to reactive enolates 8. In the following paragraphs, we present the fruitful results of this study.

Conversion of enones **1a** and **1b** to α -iodocyclohexenones **6a** and **6b**, respectively, with I₂ and pyridine in CCl₄ proceeded in good yield by the protocol of Johnson,⁵ which was originally developed for preparation of **6c**. 1,4-Addition of bulky Ar₂Cu(CN)Li₂ (**2a**-**d**) to α -iodocyclohexenones **6a**-**c** promoted by BF₃·OEt₂ was carried out in good yields to furnish ketones **7a**-**g** (Figure 1) after aqueous workup and purification by chromatography.⁶ The result is delineated in Table 1. No difficulty was incurred in the installation of the bulky aryl groups of $2\mathbf{a}-\mathbf{d}$ (entries 1–7), and the yields of $7\mathbf{a}-\mathbf{g}$ were almost the same as that obtained in a control experiment with the phenyl cuprate $2\mathbf{e}$ and enone $6\mathbf{a}$ (entry 8). A control experiment using $6\mathbf{a}$ and $2\mathbf{a}$ in the absence of BF₃•OEt₂ did not furnish the addition product $7\mathbf{a}$; instead, $6\mathbf{a}$ was recovered. In addition, the compounds which might be produced by reaction at the α -position of $6\mathbf{a}-\mathbf{c}$ with the cuprates $2\mathbf{a}-\mathbf{d}$ were not detected by TLC and ¹H NMR spectroscopy.⁷

Determination of the relative stereochemistry at the β and γ positions of the 1,4-addition products **7** by ¹H NMR spectroscopy was ambiguous due to the somewhat small coupling constants between the protons at these positions

Figure 1.

Table 1. Synthesis of Iodides 7 and Enol Phosphates 4

entry	substrate	copper reagent	product 7		product 4	
			no.	yield, %	no.	yield, %
1	6a	2a	7a	72	4a	71
2	6a	2b	7b	67	4b	70
3	6a	2c	7c	а	4 c	53
4	6a	2d	7f	74	4f	60
5	6b	2a	7d	67	4d	63
6	6c	2b	7e	60	4e	58
7	6c	2d	7g	68	4g	62
8	6a	2e	7h	65	4h	63
^a Sem	ipurified 7c w	as converted	into 4	c.		

(4.5–7.5 Hz). However, the stereochemistry of **7b** was determined to be *trans* by synthesis of Δ^{1} -*trans*-THC (vide infra).⁸ This assignment is consistent with the steric control approach of the cuprate **2b** to enone **1a**. We are speculating that the reaction of other enones and cuprates proceeds in the same manner to produce the *trans* stereochemistry as depicted in structure **7**.

The next step, conversion of the α -iodo ketones **7** to the corresponding enolates **8**, was explored first with **7a** as a representative case under the conditions of Borowitz ((EtO)₃P in EtOH or CHCl₃; Ph₂POMe in CHCl₃),⁹⁻¹¹ Utimoto (EtMgBr in Et₂O; Et₃B in Et₂O or PhH),^{12,13} and Joshi (Zn/TMSCl/THF).¹⁴ Among these protocols, use of EtMgBr was successful to generate the corresponding enolate **8a** from iodide **7a**, and reaction of enolate **8a** and (EtO)₂P(O)Cl

(5) Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W.; Wovkulich, P. M.; Uskokovi'c, M. R. *Tetrahedron Lett.* **1992**, *33*, 917–918.

(6) **Representative procedure for the 1, 4-addition:** To an ice-cold solution of the bis MOM ether of olivetol (**2a**) (0.72 g, 2.69 mmol) in Et₂O (5 mL) was added *n*-BuLi (1.57 mL, 2.01 M, 3.14 mmol) in hexane over 10 min. The mixture was stirred at 0 °C for 10 min and then at ambient temperature for 2 h. In a separate flask was placed CuCN (0.12 g, 1.35 mmol) in Et₂O (5 mL), and the flask was cooled to -78 °C. The lithiated olivetol solution was transferred to the copper suspension over 10 min at -78 °C. After the addition, the reaction mixture was stirred at 0 °C for 10 min, recooled to -78 °C, and stirred for an additional 30 min. To the resulting pale yellow solution was slowly added a solution of α -iodocy-clohexenone **6b** (0.25 g, 0.90 mmol) and BF₃·Et₂O (0.13 mL, 1.07 mmol) in Et₂O (5 mL) at -78 °C. After 2 h at -78 °C, the solution was poured into saturated NH₄Cl. The product was extracted and purified as usual to furnish ketone **7d** (0.33 g) in 67% yield. Iodides **7a**–**7h** were stable during purification and handling for the next reaction.

(7) Reactions at the α -position of α -halo ketones and organometallics have been reported: (a) Negishi, E.; Owczarczyk, Z. R.; Swanson, D. R. *Tetrahedron Lett.* **1991**, *32*, 4453–4456. (b) Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W. *Tetrahedron Lett.* **1992**, *33*, 919–922. cf. Jabri, N.; Alexakis, A.; Normant, J. F. *Tetrahedron Lett.* **1981**, *22*, 959–962.

(8) The characteristic signals for Δ^1 -trans- and Δ^1 -cis-THCs in the ¹H NMR spectra appear at 3.14 and 3.59 ppm, respectively: Taylor, E. C.; Lenard, K.; Shvo, Y. J. Am. Chem. Soc. **1966**, 88, 367–369.

(9) Borowitz, I. J.; Anschel, M.; Firstenberg, S. J. Org. Chem. 1967, 32, 1723–1729.

(10) Borowitz, I. J.; Casper, E. W. R.; Crouch, R. K.; Yee, K. C. J. Org. Chem. **1972**, *37*, 3873–3878.

(12) Aoki, Y.; Oshima, K.; Utimoto, K. Chem. Lett. **1995**, 463–464. (13) Nozaki, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. **1991**,

64, 403-409.
(14) (a) Joshi, G. C.; Pande, L. M. Synthesis 1975, 450-453. (b)
Hashimoto, S.; Itoh, A.; Kitagawa, Y.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 4192-4194.

afforded the enol phosphate **4a** in 71% yield (Scheme 2 and entry 1 of Table 1). This procedure was then applied to α -iodo ketones **7b**-**g** to furnish the successful results shown in Table 1.¹⁵ The yields were almost identical as those obtained from a control experiment with **7h** (entry 8). Note

that in most cases the enolate generation from 7 was accomplished in THF rather than Et_2O and was better in the TLC pattern than in Et_2O , though THF had been ineffective in the original report.¹²

To investigate further the reactivity of the enolates possessing bulky groups at the β -position, aldol reaction of

⁽¹¹⁾ Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 4745-4746.

⁽¹⁵⁾ **Representative procedure for generation of enol phosphates:** To an ice-cold solution of the iodo ketone **7d** (0.21 g, 0.38 mmol) in THF (5 mL) was added EtMgBr (0.57 mL, 1 M in THF, 0.57 mmol). After 10 min of stirring, ClP(O)(OEt)₂ (0.14 mL, 0.96 mmol) was added to the resulting pale yellow solution. The reaction was continued at 0 °C for 2 h and quenched with saturated NaHCO₃. The product was extracted with EtOAc and purified by chromatography on silica gel (pretreated with Et₃N) to afford the enol phosphate **4d** (0.14 g) in 63% yield.

8a with Ph(CH)₂CHO and CH₂O was examined. The reactions proceeded as efficiently as those in the simple cases reported by Utimoto¹² to afford **9** and **10**, respectively (Scheme 2). Aldol **10** was then converted to exo enone **11** in good yield by a conventional method.¹⁶ These experiments show that the steric hindrance derived from the bulky aryl group at the β -position did not diminish the reactivities of the enolates at the α -position or on the oxygen atom. Consequently, a variety of manipulations of enone **11** are possible for synthetic purposes.

Of the phosphates we examined, the synthesis of Δ^{1} -trans-THC (**15**)¹⁷ was best accomplished with enol phosphate **4b** (Scheme 3). Methylation¹⁸ of **4b** with MeMgBr in the presence of Ni(acac)₂ afforded **12**, and subsequent exposure to EtSNa in DMF¹⁹ resulted in deprotection of the TES group and one of the MeO groups to furnish **13**. Attempted onestep deprotection of the two MeO groups under more vigorous conditions was unsuccessful. Cyclization of **13** was carried out according to the procedure of Evans²⁰ in the

(17) For reviews of cannabinoid synthesis, see: (a) Razdan, R. K. In *Total Synthesis of Natural Products*; ApSimon, J., Ed.; John Wiley: New York, 1981; Vol. 4, pp 185–262. (b) Mechoulam, R.; McCallum, N. K.; Burstein, S. *Chem. Rev.* **1976**, *76*, 75–112.

(18) (a) Hayashi, T.; Fujiwa, T.; Okamoto, Y.; Katsuro, Y.; Kumada, M. *Synthesis* **1981**, 1001–1003. (b) Sahlberg, C.; Quader, A.; Claesson, A. *Tetrahedron Lett.* **1983**, *24*, 5137–5138.

(19) Feutrill, G. I.; Mirrington, R. N. Tetrahedron Lett. 1970, 1327-1328.

(20) Evans, D. A.; Barnes, D. M.; Johnson, J. S.; Lectka, T.; Von Matt, P.; Miller, S. J.; Murry, J. A.; Norcross, R. D.; Shaughnessy, E. A.; Campos, K. R. *J. Am. Chem. Soc.* **1999**, *121*, 7582–7594.

^{*a*} Reagents and conditions: (a) Ni(acac)₂, MeMgCl, THF, 90%; (b) EtSNa, DMF, 120 °C, 70%; (c) ZnBr₂, MgSO₄, CH₂CI₂, 92%; (d) EtSNa, DMF, 120 °C, 45%.

presence of MgSO₄ to afford 14^{21} in 92% yield without migration of the double bond. Finally, deprotection of 14 with EtSNa afforded 15, and its ¹H NMR spectrum was identical to the data reported.^{8,20,22}

Acknowledgment. We thank professor Y. Shoyama of Kyushu University for informing the guidelines to start this project. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan. A.W. is grateful for a Sasakawa Scientific Research Grant from The Japan Science Society.

OL010071I

^{(16) (}a) Posner, G. H.; Gurria, G. M.; Babiak, K. A. J. Org. Chem. **1977**, 42, 3173–3180. (b) Yamada, K.; Arai, T.; Sasai, H.; Shibasaki, M. J. Org. Chem. **1998**, 63, 3666–3672. (c) Kobayashi, Y.; Murugesh, M. G.; Nakano, M. Tetrahedron Lett. **2001**, 42, 1703–1707.

⁽²¹⁾ Childers, W. E., Jr.; Pinnick, H. W. J. Org. Chem. 1984, 49, 5276-5277.

⁽²²⁾ New compounds were characterized by $^1\!\mathrm{H}$ NMR (300 MHz) and $^{13}\!\mathrm{C}$ (75 MHz) spectroscopy.