A Method To Accomplish a 1,4-Addition Reaction of Bulky Nucleophiles to Enones and Subsequent Formation of Reactive Enolates

Anthony D. William and Yuichi Kobayashi*

Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan

ykobayas@bio.titech.ac.jp

Received April 16, 2001

ABSTRACT

(1) $\begin{bmatrix} X = H \\ X = I \end{bmatrix}$ reactive enolate Ar: bulky aryl groups

BF₃-promoted 1,4-addition of bulky aryl groups to α-iodo enones, prepared from the parent enones, afforded β-aryl-α-iodo ketones. Subsequent reaction with EtMgBr furnished the magnesium enolates, which upon reactions with CIP(O)(OEt)₂ and aldehydes gave enol phosphates and **aldols, respectively. This method was applied successfully to a synthesis of ∆¹ -***trans***-tetrahydrocannabinol.**

1,4-Addition of organocopper reagents to α , β -unsaturated carbonyl compounds assisted by BF_3 ⁻OEt₂ is a standard method to introduce a *bulky* group at the β -position of the carbonyl compounds (for example, $1 + 2 \rightarrow 3$ in Scheme 1).1 Unfortunately, the unreactive nature of the resulting boron enolates is described by Lipshutz,^{1c} and hence it seems impossible to enjoy the benefit of the enolate chemistry. To the best of our knowledge, neither reaction at the α position nor formation of enol esters (or ethers) for further reactions has been reported.

In our investigation of the synthesis of tetrahydrocannabinol (THC), use of BF₃·OEt₂ was indeed *indispensable* for the 1,4-addition reaction of the bulky cuprate **2a** to enone **1a** (R^1 = CMe₂(OTES)) (Et₂O, -78 °C, 1.5 h), and the addition product (structure not shown) was isolated in 90% yield after aqueous workup (Scheme 1). However, the enolate generated in situ by the above BF_3 ⁻OEt₂-assisted 1,4-addition showed no reactivity, as suggested by Lipshutz, $1c$ toward PhN(Tf)₂, Tf₂O, or ClP(=O)(OEt)₂.² Since a silyl enol ether could be metalated to a reactive enolate, we also attempted reaction of **1a** and **2a** with TMSCl and HMPA in THF according to Nakamura.3 However, the reaction did not furnish the corresponding TMS ether. Addition of *n*-BuLi to the boron enolate did not increase the reactivity toward $CIP(=O)(OEt)₂$.⁴ In contrast to the bulky cuprate 2a, the phenyl cuprate **2e**, in a control experiment, underwent reaction with enone **1a** smoothly without the assistance of BF_3 \cdot OEt₂ (Et₂O, -78 \degree C, 2 h), and the resulting enolate, upon reaction with ClP(O)(OEt)₂ (-78 °C to rt, 1 h), afforded enol phosphate **4h** (R^1 = CMe₂(OTES), Ar = Ph, E = P(O)- $(OEt)₂$) in 63% yield. On the other hand, the enolate produced in situ from **1a** and **2e** in the presence of BF_3 · OEt_2 did not react and therefore did not furnish the phosphate. These

²⁰¹⁷-**²⁰²⁰**

^{(1) (}a) Tius, M. A.; Kannaangara, G. S. K. *J. Org. Chem.* **1990**, *55*, ⁵⁷¹¹-5714. (b) Rickards, R. W.; Ro¨nneberg, H. *J. Org. Chem.* **¹⁹⁸⁴**, *⁴⁹*, ⁵⁷²-573. (c) Lipshutz, B. H.; Parker, D. A.; Kozlowski, J. A.; Nguyen, S. L. *Tetrahedron Lett.* **¹⁹⁸⁴**, *²⁵*, 5959-5962.

⁽²⁾ McMurry, J. E.; Scott, W. J. *Tetrahedron Lett.* **¹⁹⁸³**, *²⁴*, 979-982. (3) Nakamura, E.; Matsuzawa, S.; Horiguchi, Y.; Kuwajima, I. *Tetrahedron Lett.* **¹⁹⁸⁶**, *²⁷*, 4029-4032.

⁽⁴⁾ Addition of *n*-BuLi to the (presumed) copper enolate is reported to increase the reactivity of the given enolate: Batt, D. G.; Takamura, N.; Ganem, B. *J. Am. Chem. Soc.* **¹⁹⁸⁴**, *¹⁰⁶*, 3353-3354.

preliminary results prompted us to devise an indirect method. Shown in Scheme 1 is one such method which consists of 1,4-addition of the cuprate 2 to α -iodocycloalkenones 6 and subsequent transformation of the resulting α -iodo ketones **7** to reactive enolates **8**. In the following paragraphs, we present the fruitful results of this study.

Conversion of enones $1a$ and $1b$ to α -iodocyclohexenones **6a** and **6b**, respectively, with I_2 and pyridine in CCl₄ proceeded in good yield by the protocol of Johnson,⁵ which was originally developed for preparation of **6c**. 1,4-Addition of bulky $Ar_2Cu(CN)Li_2$ (2a-d) to α -iodocyclohexenones $6a - c$ promoted by BF_3 ^{\cdot}OEt₂ was carried out in good yields to furnish ketones **7a**-**^g** (Figure 1) after aqueous workup and purification by chromatography.6 The result is delineated in Table 1. No difficulty was incurred in the installation of the bulky aryl groups of $2a-d$ (entries $1-7$), and the yields of **7a**-**^g** were almost the same as that obtained in a control experiment with the phenyl cuprate **2e** and enone **6a** (entry 8). A control experiment using **6a** and **2a** in the absence of BF_3 ^{\cdot}OEt₂ did not furnish the addition product **7a**; instead, **6a** was recovered. In addition, the compounds which might be produced by reaction at the α -position of $6a - c$ with the cuprates $2a-d$ were not detected by TLC and ¹H NMR spectroscopy ⁷ spectroscopy.⁷

Determination of the relative stereochemistry at the β and *γ* positions of the 1,4-addition products **7** by 1H NMR spectroscopy was ambiguous due to the somewhat small coupling constants between the protons at these positions

Figure 1.

Table 1. Synthesis of Iodides **7** and Enol Phosphates **4**

		copper	product 7		product 4	
entry	substrate	reagent	no.	yield, %	no.	yield, %
1	6а	2a	7a	72	4a	71
2	6a	2 _b	7Ь	67	4b	70
3	6а	2c	7с	a	4c	53
4	6а	2d	7f	74	4f	60
5	6b	2a	7d	67	4d	63
6	6с	2 _b	7е	60	4e	58
7	6с	2d	7g	68	4 _g	62
8	6а	2e	7h	65	4h	63
<i>a</i> Semipurified 7c was converted into 4c.						

(4.5-7.5 Hz). However, the stereochemistry of **7b** was determined to be *trans* by synthesis of ∆¹ -*trans*-THC (vide infra).8 This assignment is consistent with the steric control approach of the cuprate **2b** to enone **1a**. We are speculating that the reaction of other enones and cuprates proceeds in the same manner to produce the *trans* stereochemistry as depicted in structure **7**.

The next step, conversion of the α -iodo ketones 7 to the corresponding enolates **8**, was explored first with **7a** as a representative case under the conditions of Borowitz ($(EtO)_{3}P$ in EtOH or CHCl₃; Ph₂POMe in CHCl₃),⁹⁻¹¹ Utimoto (EtMgBr in Et₂O; Et₃B in Et₂O or PhH),^{12,13} and Joshi (Zn/ TMSCl/THF).14 Among these protocols, use of EtMgBr was successful to generate the corresponding enolate **8a** from iodide $7a$, and reaction of enolate $8a$ and $(EtO)_2P(O)Cl$

(5) Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W.; Wovkulich, P. M.; Uskokovi′c, M. R. *Tetrahedron Lett.* **¹⁹⁹²**, *³³*, 917- 918.

(6) **Representative procedure for the 1, 4-addition:** To an ice-cold solution of the bis MOM ether of olivetol $(2a)$ $(0.72 g, 2.69 mmol)$ in Et₂O (5 mL) was added *n*-BuLi (1.57 mL, 2.01 M, 3.14 mmol) in hexane over 10 min. The mixture was stirred at 0 °C for 10 min and then at ambient temperature for 2 h. In a separate flask was placed CuCN (0.12 g, 1.35 mmol) in Et₂O (5 mL), and the flask was cooled to -78 °C. The lithiated olivetol solution was transferred to the copper suspension over 10 min at -78 °C. After the addition, the reaction mixture was stirred at 0 °C for 10 min, recooled to -78 °C, and stirred for an additional 30 min. To the resulting pale yellow solution was slowly added a solution of α -iodocyresulting pale yellow solution was slowly added a solution of α -iodocy-
clohexenone 6b (0.25 σ 0.90 mmol) and BE₂·Et₂O (0.13 mL, 1.07 mmol) clohexenone **6b** (0.25 g, 0.90 mmol) and BF_3E_2O (0.13 mL, 1.07 mmol) in Et_2O (5 mL) at -78 °C. After 2 h at -78 °C. the solution was poured in Et₂O (5 mL) at -78 °C. After 2 h at -78 °C, the solution was poured
into saturated NH₄Cl. The product was extracted and purified as usual to into saturated NH4Cl. The product was extracted and purified as usual to furnish ketone **7d** (0.33 g) in 67% yield. Iodides **7a**-**7h** were stable during purification and handling for the next reaction.

(7) Reactions at the α -position of α -halo ketones and organometallics have been reported: (a) Negishi, E.; Owczarczyk, Z. R.; Swanson, D. R. Tetrahedron Lett. 1991, 32, 4453–4456. (b) Johnson, C. R.; Adams, J. P.; *Tetrahedron Lett.* **¹⁹⁹¹**, *³²*, 4453-4456. (b) Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W. *Tetrahedron Lett.* **¹⁹⁹²**, *³³*, 919- 922. cf. Jabri, N.; Alexakis, A.; Normant, J. F. *Tetrahedron Lett*. **1981**, *22*, ⁹⁵⁹-962.

(8) The characteristic signals for Δ^1 -*trans*- and Δ^1 -*cis*-THCs in the ¹H NMR spectra appear at 3.14 and 3.59 ppm, respectively: Taylor, E. C.;
Lenard, K.; Shvo, Y. J. Am. Chem. Soc. 1966, 88, 367–369.

Lenard, K.; Shvo, Y. *J. Am. Chem. Soc*. **¹⁹⁶⁶**, *⁸⁸*, 367-369. (9) Borowitz, I. J.; Anschel, M.; Firstenberg, S. *J. Org. Chem.* **1967**, *³²*, 1723-1729.

(10) Borowitz, I. J.; Casper, E. W. R.; Crouch, R. K.; Yee, K. C. *J. Org. Chem.* **¹⁹⁷²**, *³⁷*, 3873-3878.

(12) Aoki, Y..; Oshima, K.; Utimoto, K. *Chem*. *Lett.* **¹⁹⁹⁵**, 463-464. (13) Nozaki, K.; Oshima, K.; Utimoto, K. *Bull. Chem. Soc. Jpn.* **1991**,

⁶⁴, 403-409. (14) (a) Joshi, G. C.; Pande, L. M. *Synthesis* **¹⁹⁷⁵**, 450-453. (b) Hashimoto, S.; Itoh, A.; Kitagawa, Y.; Yamamoto, H.; Nozaki, H. *J. Am. Chem. Soc.* **¹⁹⁷⁷**, *⁹⁹*, 4192-4194.

afforded the enol phosphate **4a** in 71% yield (Scheme 2 and entry 1 of Table 1). This procedure was then applied to α -iodo ketones $7b - g$ to furnish the successful results shown in Table 1.15 The yields were almost identical as those obtained from a control experiment with **7h** (entry 8). Note

that in most cases the enolate generation from **7** was accomplished in THF rather than $Et₂O$ and was better in the TLC pattern than in Et_2O , though THF had been ineffective in the original report. 12

To investigate further the reactivity of the enolates possessing bulky groups at the *â*-position, aldol reaction of

⁽¹¹⁾ Stork, G.; Isobe, M. *J. Am. Chem. Soc*. **¹⁹⁷⁵**, *⁹⁷*, 4745-4746.

⁽¹⁵⁾ **Representative procedure for generation of enol phosphates:** To an ice-cold solution of the iodo ketone **7d** (0.21 g, 0.38 mmol) in THF (5 mL) was added EtMgBr (0.57 mL, 1 M in THF, 0.57 mmol). After 10 min of stirring, $CIP(O)(OEt)_2$ (0.14 mL, 0.96 mmol) was added to the resulting pale yellow solution. The reaction was continued at 0 °C for 2 h and quenched with saturated NaHCO₃. The product was extracted with EtOAc and purified by chromatography on silica gel (pretreated with Et3N) to afford the enol phosphate **4d** (0.14 g) in 63% yield.

8a with Ph(CH)₂CHO and CH₂O was examined. The reactions proceeded as efficiently as those in the simple cases reported by Utimoto¹² to afford 9 and 10 , respectively (Scheme 2). Aldol **10** was then converted to exo enone **11** in good yield by a conventional method.16 These experiments show that the steric hindrance derived from the bulky aryl group at the β -position did not diminish the reactivities of the enolates at the α -position or on the oxygen atom. Consequently, a variety of manipulations of enone **11** are possible for synthetic purposes.

Of the phosphates we examined, the synthesis of ∆¹ -*trans*-THC (**15**)17 was best accomplished with enol phosphate **4b** (Scheme 3). Methylation¹⁸ of $4b$ with MeMgBr in the presence of Ni(acac)₂ afforded 12, and subsequent exposure to EtSNa in DMF19 resulted in deprotection of the TES group and one of the MeO groups to furnish **13**. Attempted onestep deprotection of the two MeO groups under more vigorous conditions was unsuccessful. Cyclization of **13** was carried out according to the procedure of Evans²⁰ in the

(17) For reviews of cannabinoid synthesis, see: (a) Razdan, R. K. In *Total Synthesis of Natural Products*; ApSimon, J., Ed.; John Wiley: New York, 1981; Vol. 4, pp 185-262. (b) Mechoulam, R.; McCallum, N. K.; Burstein, S*. Chem. Re*V. **¹⁹⁷⁶**, *⁷⁶*, 75-112.

(18) (a) Hayashi, T.; Fujiwa, T.; Okamoto, Y.; Katsuro, Y.; Kumada, M. *Synthesis* **¹⁹⁸¹**, 1001-1003. (b) Sahlberg, C.; Quader, A.; Claesson, A. *Tetrahedron Lett*. **¹⁹⁸³**, *²⁴*, 5137-5138.

(19) Feutrill, G. I.; Mirrington, R. N. *Tetrahedron Lett.* **¹⁹⁷⁰**, 1327- 1328.

(20) Evans, D. A.; Barnes, D. M.; Johnson, J. S.; Lectka, T.; Von Matt, P.; Miller, S. J.; Murry, J. A.; Norcross, R. D.; Shaughnessy, E. A.; Campos, K. R. *J. Am. Chem. Soc.* **¹⁹⁹⁹**, *¹²¹*, 7582-7594.

a Reagents and conditions: (a) Ni(acac)₂, MeMgCl, THF, 90%; (b) EtSNa, DMF, 120 °C, 70%; (c) ZnBr₂, MgSO₄, CH₂CI₂, 92%; (d) EtSNa, DMF, 120 °C, 45%.

presence of MgSO4 to afford **14**²¹ in 92% yield without migration of the double bond. Finally, deprotection of **14** with EtSNa afforded 15, and its ¹H NMR spectrum was identical to the data reported.8,20,22

Acknowledgment. We thank professor Y. Shoyama of Kyushu University for informing the guidelines to start this project. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan. A.W. is grateful for a Sasakawa Scientific Research Grant from The Japan Science Society.

OL010071I

^{(16) (}a) Posner, G. H.; Gurria, G. M.; Babiak, K. A. *J. Org. Chem*. **1977**, *⁴²*, 3173-3180. (b) Yamada, K.; Arai, T.; Sasai, H.; Shibasaki, M. *J. Org. Chem*. **¹⁹⁹⁸**, *⁶³*, 3666-3672. (c) Kobayashi, Y.; Murugesh, M. G.; Nakano, M. *Tetrahedron Lett*. **²⁰⁰¹**, *⁴²*, 1703-1707.

⁽²¹⁾ Childers, W. E., Jr.; Pinnick, H. W. *J. Org*. *Chem*. **¹⁹⁸⁴**, *49,* ⁵²⁷⁶- 5277.

⁽²²⁾ New compounds were characterized by 1 H NMR (300 MHz) and 13 C (75 MHz) spectroscopy.